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The covariant form of the Landau–de Gennes free energy is used to study the chevron structure formed by
cooling from the Sm-A to the nonchiral Sm-C phase in a surface-stabilized cell with planar boundary condi-
tions. We show that the chevron is the thermodynamic equilibrium structure. The chevron structure is studied
depending on the liquid-crystal elastic properties, temperature, and the surface orientational anchoring strength.
We show that the bistability of the chevron structure results from the continuity of the molecular director over
the chevron tip of finite width, and is strongly dependent on the surface orientational anchoring. We estimate
analytically the threshold temperature for the chevron formation and show that above this temperature the
bookshelf geometry is stable. We show that the energy of the chevron interface follows a power-law depen-
dence on reduced temperature with the exponent of3

2 . @S1063-651X~96!09110-6#

PACS number~s!: 61.30.Jf, 64.70.Md

I. INTRODUCTION

The chevron structure can be observed in thin cells of
Sm-C liquid crystal, either chiral or nonchiral, when a cell
filled with Sm-A liquid crystal is cooled into the Sm-C phase
@1,2#. It is a widespread feature in ferroelectric Sm-C! cells
with optical device applications. The chevron is believed to
be a consequence of the mismatch between the periodicity
imposed by the surface and the periodicity imposed by the
bulk liquid crystal. In many experimental contexts@3# once
the layers are formed in the Sm-A phase, the surface posi-
tional anchoring is frozen in and the layers do not move
along the glass plates. In this case the only way to simulta-
neously maintain the periodicity of the Sm-A liquid crystal
along the boundary plates and reduce the layer thickness is to
tilt the layers away from the normal to the bounding plates.

There has already been extensive work on the theory of
the layer and director structure in varying alignment and ap-
plied field conditions in ferroelectric Sm-C liquid crystals.
The local liquid-crystal structure is described in terms of the
molecular cone angle (q), the layer tilt angle (d), and the
angle describing the director rotation about the cone (w)
@Fig. 1~b!#. Clark and co-workers@1,4# have assumed that the
chevron tip is sharp and have thus neglected the detailed
structure of the layers at the chevron tip. In their model the
molecular director is continuous over the cell. They have
assumed that the layer tilt angle is constant (d0) and smaller
than the molecular cone angle (q0). This leads to director
pretilt; the director at the surface becomes inclined with re-
spect to the cell plane at an angle6w0, where
sinw05tand0 /tanq0. As soon as the director tilts away from
the cell plane, there are two distinct stable director states
with the same free energy. This bistability is very important
and is used in optical applications, where the cell is switched
between the stable states, i.e., between a dark and a bright
state. The description has later been extended to include the
effects of the electric field@5–7#.

However, treating the chevron tip as sharp leaves open the
question of the chevron tip structure. Nakagawa@8# proposed

a model that takes into account dilatation and bending of the
layers and the director rotation about the cone. In this ap-
proach the sharp tip is replaced by a localized folding, asso-
ciated with a solitonlike solution. His solution is valid when
the anglesq, d, andw are small. A simplified form of Na-
kagawa’s expression for the free-energy density@9# was used
by Sabateret al. to study the chevron structures in the case
of large angles@10#. In all the above models the molecular
cone angle was kept constant and the bulk value of the layer
tilt angle was assumed to be smaller than the molecular cone
angle. De Meyere and co-workers@11,12# have used a re-
lated strategy, in which spatial variations of the molecular
cone angle were also taken into account. In their work the
molecular cone angle and the layer tilt angle are coupled.
The coupling parameter is defined by the way in which the
transition from the Sm-A to the Sm-C phase occurred. Their

FIG. 1. ~a! The coordinate system in which the numerical cal-
culations were performed.~b! The coordinate system used to de-
scribe the chevron structure.
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expression is based on the Dahl-Lagerwall description of the
Sm-C! elasticity @13,14#.

Recently, Limat@15# proposed a simplified model of the
chevron structure based on a generalization of the
‘‘uniaxial’’ ~or ‘‘nematic’’! approximation of the orienta-
tional elasticity. Two parameters are introduced measuring
the departure from the uniaxial approximation, and the mo-
lecular cone angle is taken to be constant. When the bulk
value of layer tilt angle is small compared to the molecular
cone angle and in the case of the uniform states, this model
reduces to Nakagawa’s soliton solution. The sharp chevron
tip discontinuity characteristic of the model of Clark and
co-workers is obtained in the uniaxial limit.

In this paper we use the Landau–de Gennes theory to
show that the chevron is the equilibrium structure of the
Sm-C phase in thin layers with planar boundary conditions.
The model is conceptually quite simple, but still allows us to
study all the essential features of the structure. We describe
the Sm-C phase in terms of the director fieldn(r ) and the
complex smectic density wavec(r ), as proposed by de
Gennes@16# and Lubensky@17#. In our view, with respect to
other available models, our model has computational and
conceptual advantages for describing the chevron structure.
Conceptually we retain the simplicity of the model of Clark
and co-workers. Computationally, we shall find that many of
the simplifying assumptions employed in other models of
this phenomenon are no longer required in our model.

The central assumption of the previous models is that the
equilibrium layer tilt angle (d0) is smaller than the equilib-
rium molecular cone angle (q0). This has been a necessary
condition to obtain a finite pretilt of the molecular director.
Optical bistability, which is necessary for switching in
surface-stabilized chevron liquid-crystal cells, requires a fi-
nite pretilt. By contrast, we show thatd0,q0 is not a nec-
essary condition to obtain the pretilt of the director.

In our approach, all three relevant angles are treated as
variational parameters. In other modelsq is either kept con-
stant or is coupled tod by cosq5ncosd, n5const,1. By
comparison with the results of other models of the same
phenomenon, we find that

~i! The model of Clarket al.works well deep in the Sm-
C phase.

~ii ! We obtain results for the spatial variation of the layer
tilt angle similar to those of De Meyere and co-workers.

~iii ! Limat has shown that in the limit of his model Naka-
gawa’s soliton solution is valid only whend0!q0. We show
how Limat’s two parameters that measure the departure from
the uniaxial approximation can be expressed using the smec-
tic elastic constants entering our model.

~iv! Leslie and co-workers@18,19# have proposed a rather
general free-energy density expression for the Sm-C phase.
This expression is written in terms of thea, b, c vectors, and
contains all the invariants of the Sm-C phase. This approach
is modeled on classical continuum mechanics, and is awk-
wardly generalized to discuss variations in the layer thick-
ness and changes in molecular tilt with respect to the layer
normal. It is rather comprehensive. The main advantage of
our approach is that it explicitly focuses on layer displace-
ment in a problem for which the boundary conditions are
expressed in terms of zero layer displacement. We are also
able to treat the temperature dependence of the structure, in

particular the transition from the Sm-A phase.
We emphasize that we need only four elastic constants to

describe the main features of the chevron structure. To de-
scribe the effects of the surface an additional term is needed.
We present a simple but thorough study of the effect of the
surface anchoring conditions on the chevron structure, espe-
cially on the pretilt of the molecular director. Our model also
enables us to study the temperature dependence of the chev-
ron structure. We show that the chevron structure is not
formed immediately below the Sm-A–Sm-C transition tem-
perature and we shall estimate analytically the threshold tem-
perature for the chevron formation.

Spatial variations of the smectic order parameter can also
readily be taken into account using our model, but we post-
pone this aspect to future work. In this paper we stay well
inside the smectic phase where spatial variations of the
smectic order parameter are expected to be negligible.

The plan of the paper is as follows. In Sec. II we intro-
duce the model. In Sec. III we show the numerical results for
the spatial variation of all the variational parameters and the
free-energy density in the chevron. We calculate the excess
free energy associated with the chevron interface. We also
analytically estimate the threshold temperature for the chev-
ron formation. Then we compare our results with other mod-
els. In Sec. IV we draw some brief conclusions.

II. MODEL

The Sm-C phase is described in terms of the director field
n„r … and the complex smectic density wavec(r )
5h(r )exp@if(r )#. The latter is related to the first harmonic
of the density deviation from the homogeneous distribution.
The phase factorf(r ) determines the position of the layers,
with n5¹f/u¹fu the layer normal direction. The scalar
smectic order parameterh(r ) describes the degree of layer
ordering. Throughout the following work it is kept constant
and equal to its bulk valuehB . We thus assume that local
smectic elastic distortions are not strong enough to cause
significant variation inh(r ).

The free energy of a Sm-C cell can be written as a sum of
the nematic, smectic, and surface contributions@16,17,20#:

F5E @ f n~r !1 f s~r !#d
3r1E f a~r !d

2r . ~1!

In the one-constant approximation the nematic free-energy
density is given by

f n~r !5 1
2K@~¹•n!21~¹3n!2#, ~2!

where K is a nematic elastic constant. The smectic free-
energy density is

f s~r !5ciu~n•¹2 iq0!cu21c'u~n3¹!cu21Du~n3¹!2cu2,
~3!

whereci , c' , andD are the smectic elastic constants. The
quantity ci is related to the compressibility smectic elastic
constantB: ci5Bq0

22hB
22 , as will be shown later. The cor-

responding term inf s(r ) is zero if the layer thickness is the
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same as in the Sm-A phase, i.e.,d052p/q0. The smectic tilt
elastic constantc' measures the cost of tilting the director
away from the layer normal. We assume that it is tempera-
ture dependent:c'5c'0(T/TAC21), whereTAC is the tran-
sition temperature from the Sm-A to the Sm-C phase in the
bulk. In the Sm-A phasec'.0 and the corresponding term
forces the molecules to align perpendicular to the smectic
layer. In the Sm-C phasec',0 and the corresponding term
is minimized if the molecules align parallel to the layers. The
final term stabilizes an intermediate tilt ofn with respect to
the normal to the layer in the Sm-C phase. In addition, it
contains the second derivative of the phase factorf(r ),
a term that resists the bending of the smectic layers. In
the bulk Sm-C phase the elastic smectic contribution
is minimized for the molecular cone angle
qB5arctanAuc'u/(2Dq0

2). We emphasize that the above
four elastic constants~one nematic and three smectic! are the
minimum set of parameters to describe the major qualitative
features of chevron cells.

The surface energy is modeled by the Rapini-Papoular
term describing tangential homogeneous anchoring

f a~r !52 1
2WS~n• ẑ!

2. ~4!

In the limit of strong orientational anchoring (WS→`) the
molecules align along the easy axisẑ. Clearly the model can
be trivially modified to take into account surface treatments
that favor finite pretilt for technological reasons, though we
do not address this question in this paper.

Details of the calculation

The calculations are performed in the Cartesian coordi-
nate system. The Sm-C liquid crystal is confined between the
plates located atx52L/2 andx5L/2, as shown in Fig. 1~a!.
The layers are running in thez direction. The director orien-
tation can be written as

n5~sina sinb,sina cosb,cosa!, ~5!

wherea is the angle between thez direction andn, andb is
the angle between they direction and the projection ofn to
the xy plane.

We assume thata and b are functions ofx only. The
smectic density wave enforces the periodicity in thez direc-
tion and is expressed asc(r )5hBexp$iq0@z1u(x)#%. The dis-
placement vectoru(x) describes departures from the planar
layer configuration. The periodicity enforced in thez direc-
tion is q052p/d0 and is established in the Sm-A phase.

In the coordinate system chosen for numerical calcula-
tions the variables area(x), b(x), andu(x). The chevron
structure is usually described in the local coordinate system
by the molecular cone angleq(x), the layer tilt angle
d(x), and the rotation about the conew(x) @Fig. 1~b!#. In
terms of these anglesn is expressed as

n5~cosd sinq sinw2sind cosq,sinq cosw,sind sinq sinw

1cosqcosd!. ~6!

Comparing expressions~5! and ~6! and observing that
du/dx52tand, we find the following relations:

cosq5
2tand sina sinb1cosa

A11tan2d

and

cosw5
sina cosb

sinq
.

There are three important length scales in the problem.
These are the following:

~i! l'5@K/(uc'uq0
2hB

2)#1/2 and l i5@K/(ciq0
2hB

2)#1/2,
measuring the penetration of locally induced nematic bend or
twist deformation into the smectic phase in the layer plane
(l') and along the layer normal (l i); we regard these as
subclasses of the same phenomenon.

~ii ! lS5K/WS , the surface extrapolation length.
~iii ! lch52A2Dq0(ciuc'u)21/2, the chevron tip length

scale.
We shall find it convenient to introduce the following

dimensionless parameters:~a! the reduced temperature,
t5T/TAC21; ~b! uc'u/ci5a0utu5(l i /l')

2; ~c!
D15DhB

2q0
4L2/K; ~d! D25DhB

2q0
2/K; ~e! r5x/L; ~f!

w5du/dx. The bulk value of the molecular cone
angle and the chevron tip width can be expressed in terms
of the dimensionless parametersD1 and D2 as
tanqB5L/l iAa0utu/(2D1) andlch52l iAD2/tanqB .

For computational purposes we express the free energy in
the dimensionless form. The dimensionless free energyG
per unit surface is defined as

G5
L

K
F5E

21/2

1/2

@gn~r!1gs~r!#dr1ga~r51/2!

1ga~r521/2!. ~7!

The quantities in Eq.~7! have the following meanings~the
subscriptr denotes the derivative with respect tor):

gn~r!5 1
2 ~ar

21br
2sin2a! ~8!

is the dimensionless nematic free-energy density;

gs~r!5
L2

l i
2 ~w sina sinb1cosa21!21

L2

l i
2a0t@sin

2a

1w2~sin2a cos2b1cos2a!2w sin2a sinb#

1D1@sin
2a1w2~sin2a cos2b1cos2a!

2w sin2a sinb#2

1D2@~arcosa sinb1brsina cosb!

3~w sina sinb1cosa!2~12sin2a sin2b!wr#2

~9!

is the dimensionless smectic free energy; and

ga~r!52
L

2lS
cos2a ~10!

is the dimensionless surface orientational anchoring free en-
ergy.
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The minimization of the free energyG yields three bulk
equations:

]~gn1gs!

]a
2

d

dr

]~gn1gs!

]ar
50, ~11!

]~gn1gs!

]b
2

d

dr

]~gn1gs!

]br
50, ~12!

]gs
]w

2
d

dr

]gs
]wr

50, ~13!

and three surface equations for each boundary

F6
]~gn1gs!

]ar
1

]ga
]a G

r561/2

50 , ~14!

F6
]~gn1gs!

]br
1

]ga
]b G

r561/2

50, ~15!

S ]gs
]wr

D
r561/2

50. ~16!

The Euler-Lagrange equations are solved numerically using
the relaxation method@21#. The layer displacementu(r) can
be obtained fromw(r) by integration.

The expression for the free-energy density is expressed
more simply in terms of the anglesa, b, andw rather than
with d, q, andw. However, in the limit of small angles it is
rather easy to reexpress the free-energy density in terms of
the local coordinate system. We now use this set of param-
eters in order to identify the physical meaning of the dimen-
sionless parameters and length scales that we have intro-
duced. For simplicity we assume no orientational surface
anchoring (lS→`). We express the nematic@Eq. ~8!# and
smectic@Eq. ~9!# dimensionless free-energy densities as an
expansion in the anglesd, q, andw for t,0. In the spirit of
Landau, we include second- and fourth-order terms in these
angles. We then obtain for the total free-energy density:

g5 1
2 ~dr

21qr
21wr

2q222drqrw22wrdrq!

1
1

4

L2

l i
2 ~q22d2!22

L2

l'
2 q2

1D1q
41D2~qr

2w21wr
2q2!. ~17!

~We have neglected the fourth-order terms inq andd in the
l' term, because here the quadratic term inq dominates.!

First we consider the caseq5qB5const and write out
the Euler-Lagrange equations ford andw:

L2

l i
2 d~d22qB

2 !1wrrqB2drr50,

~112D2!wrrqB2drr50.

This is the coupled set of equations already
discussed by Nakagawa. The solutions ford and w
are d 5 d0tanh(rL/ld) , where d05 qB and
ld52l i@D2 /$qB

2(112D2)%#1/2, and w5w0tanh(rL/ld),

with w05d0 /@qB(112D2)#. Sinced05qB andD2 is usu-
ally much smaller than 1, the amplitude ofw is not small and
the approximationw!1 is not justified. Nevertheless, from
the above result we expect that the typical lengths that de-
scribe relaxation of the layer tilt angle and the rotation about
the cone are the same. AssumingD2!1, we define the char-
acteristic chevron tip length scale aslch52l iAD2/qB ,
which in the limit of smallqB coincides with our original
definition.

We also need a length that describes angular relaxation to
the cone angle. The Euler-Lagrange equation forq is

L2

l i
2q~q22d2!22

L2

l'
2 q14D1q

31~112D2!wr
2q

24D2wrqrw2~112D2w
2!qrr1drrw50 .

~18!

This differential equation cannot be solved analytically. In
the bookshelf geometry (w5d50), it reduces to

S L2l i
2 14D1Dq322

L2

l'
2 q2qrr50.

Next we assume thatq5q01Dq(r) and finally obtain

4
L2

l'
2 Dq2~Dq!rr50 and q0

25
2~L2/l'

2 !

L2/l i
214D1

,qB
2.

From this, the perturbations inq should die out on the length
scale ofl'/2.

FIG. 2. Numerical results for the spatial variations of the mo-
lecular cone angle, the layer tilt angle, and the free-energy density.
Dotted line, the molecular cone angleq; full line, the layer tilt
angled; dashed line, the free-energy densityg(r); andgB , the bulk
value of the free-energy density. The parameter values are
L2/l i

25105, a051, utu50.01, D1543104, D250.01, and
L/lS50.
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III. CHEVRON STRUCTURE

A. Parameter values

Typical values for the parameters entering the model are
L'2mm andd0;l i'3nm @22#. We do not know of any
experimental measurements ofa0utu deep in the Sm-C phase,
i.e., far from the Sm-A–Sm-C or N–Sm-C phase transition.
As an estimate we use McMillan’s@23# estimate that deep in
the Sm-A phasea0utu is of the order of the ratio between the
molecular diameter and the molecular length, and we take
a0utu'0.1. The values ofc' , ci , andD have been measured
close to theN–Sm-A–Sm-C multicritical point @24#. From
those measurements ofuc'u/ci at different utu we estimate
thata0;o(1). TheparameterD1 is calculated using the val-
ues fora0utu andl i and assuming a value for the bulk mo-
lecular cone angle. For the materials showing theN–Sm-
A–Sm-C phase transitionqB'20°. D2 is obtained from
D1 by noting thatD25D1 /(L

2q0
2).

B. Director structure

We have calculated the director structure using the fol-
lowing representative values of the parameters:

L2/l i
25105, a051, utu50.01,D1543104, andD250.01.

Figure 2 shows the numerical results for the spatial
variations of the molecular cone angleq and the layer
tilt angle d at a very weak surface orientational anchoring
(L/lS→0). The anglesq and d are equal to the bulk
value of the molecular cone angle everywhere except
around the chevron tip. This area is enlarged in the figure.
Around the chevron tipq is reduced significantly andd goes
to zero.

In Figs. 3~a! and 3~b! the director rotation about the cone
is shown. In the middle of the cellw(0)50 orp @Fig. 3~a!#.

FIG. 3. The rotation of the molecular director about the cone.~a!
The director rotation about the cone (w) for different surface ori-
entational strengths. Dotted line, strong anchoring,L/lS5103; full
line, medium anchoring,L/lS51; dashed line, weak anchoring,
L/lS51023; inset, thec-director rotation about the cone at an in-
termediate value of the surface anchoring strength. Two stable
states, both with the same total free energy, are shown.~b! The
value ofw at the surface as a function of the surface orientational
anchoring strength. In all cases,L2/l i

25105, a051, utu50.01,
D1543104, andD250.01.

FIG. 4. ~a! The width of the chevron tip,~b! the reduction of the
molecular cone angle at the chevron tip, and~c! the energy of the
chevron interface as a function ofqB at a constant reduced tem-
perature.L52 mm, K510211 J/m. In all cases:L2/l i

25105,
a051, utu50.1, andL/lS50.
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This is expected, as these two positions are the only ones
with q(0)Þ0 where the director remains continuous over
the symmetric cell. Another possibility would beq(0)50,
but the corresponding free energy is greater than in the
case ofw(0)50 or p with finite q(0). The director ro-
tates about the cone when moving towards the surface.
While the changes in the spatial variation ofq and d
caused by the variation of the surface anchoring strength are
small, the rotation about the cone strongly depends on the
surface orientational anchoring strength as shown in Fig.
3~a!. In the case of very strong anchoring the director rotates
about the cone byp/2 so that it is along thez axis at the
surface, while with weak anchoringwÞp/2 at the surface.
The rotation of the projection of the director to the smectic
plane (c director! is shown in the inset to Fig. 3~a!. Thus,
althoughd56qB everywhere in the cell except around the
chevron tip, the director tilts away from the cell plane
(x,z). As soon as the director tilts away from the (x,z)
plane, there are two distinct stable director states with the
same free energy@the inset to Fig. 3~a!#. This bistability is
very important and is used in optical applications, where the
cell is switched between these states, i.e., between a dark and
a bright state.

The value ofw at the surface as a function of the surface
orientational anchoring strength is shown in Fig. 3~b!. A rea-
sonable value ofWS51025 J/m2 @25,26# gives with
K;10211 J/m1 the surface extrapolation lengthlS'1mm,
which is just the range of a typical cell thickness used in
displays. From Fig. 3~b! we deduce thatlS'1mm corre-
sponds to an intermediate value of the surface orientational
anchoring.

The free-energy density variationg(r) is shown in Fig. 2.
As expected the free-energy density takes its bulk value
everywhere except close to the chevron tip. In that
region it increases significantly. AssumingL52 mm and
K510211 J/m1, the excess energy associated with the chev-
ron interface is 3.531027 J/m2. The free-energy density
even becomes positive around the chevron tip, which sug-
gests that local smectic elastic distortions might be strong
enough to cause a substantial decrease in the smectic order
parameterh.

We also examine the length scale defining the chevron tip,
the excess energy of the chevron interface, and the reduction
of the molecular cone angle at the chevron tip as a function
of the elastic constantD at utu50.1, i.e., well inside the Sm-
C phase. The parametersc'(T) andD determine the bulk
value of the molecular cone angle and the characteristic
chevron interface width. We therefore plot the numerical re-
sults as a function ofqB at constant reduced temperature.
The chevron tip length scale@Fig. 4~a!# is obtained by com-
parison with the hypothetical formd5dstanh(rL/lch), where
ds is the value ofd at the cell surface. In practice we use as
a criterion for chevron width that distance over whichd rises
from 0 todstanh1. The ratio between the numerically calcu-
lated chevron tip length scale andlch is essentially constant
for all qB and equal to 1.1060.05. The approximation
d5dstanh(rL/lch) is thus quite good. From Fig. 4~a! we also
see that far from the Sm-A–Sm-C transition temperature the
chevron tip length scale is of the order of the layer thickness
and of the order 1023 of the cell thickness. Our continuum
model should be valid even for such smalllch, as the short

axes of the molecules are considerably smaller than the layer
thickness and so the number of molecules in the deformedre-
gion of each layer is still reasonably large. The energy of the
chevron interface is plotted in Fig. 4~c! as a function of
qB . The energy increases for narrower chevron tips and
shows linear dependence onqB at a constant reduced tem-
perature. This dependence can also be obtained from Eq.
~17!, where the leading term in the chevron energy is
Fch5KGch/L}c'lchqB

2}qB .

FIG. 5. Temperature dependence of the chevron structure. Thick
full line, utu50.01; dotted line,utu50.001; dashed line,utu51025;
and thin full line, utu52.631026. Spatial variations of the~a! mo-
lecular cone angle,~b! layer tilt angle, and~c! rotation about the
cone. In all cases,L2/l i

25105, a051, D1543104, D250.01, and
L/lS50.
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C. Temperature dependence

The results for temperature dependence ofd, q, andw for
a chosen value ofD, corresponding toqB519.5° at
utu50.1 in Fig. 4~a!, are shown in Figs. 5~a!–5~c!. The plots
show that the chevron tip width is increased when tempera-
ture approaches the Sm-A–Sm-C transition temperature.

The temperature dependence of the chevron tip width and
the ratio between the numerically calculated chevron tip
width (lch

num) and the characteristic lengthlch are shown in
Fig. 6~a!. We observe that close to the phase transition tem-
perature the chevron tip width is smaller thanlch . In the
following we show that close to the phase transition the ap-
proximationd5dssin(pr) is better thand5dstanh(rL/lch).
The temperature dependence of the decrease in the molec-
ular cone angle at the chevron tip is shown in Fig. 6~b!.
In Fig. 7 the energy of the chevron interface is plotted.
It shows a power-law dependence on the reduced temp-
erature with an exponent of 3/2 that can be obtained
from Eq. ~17!, where the leading term in the energy of the
chevron isFch5KGch/L}c'qB

2lch1ciqB
4lch}utu3/2, since

c'}utu, qB}utu1/2, andlch}qB
21}utu21/2. The plot of numeri-

cally computed values in Fig. 7 gives an exponent of
1.5260.02, which gives a check on the consistency of cal-
culation.

To estimate the threshold temperature for the chevron
formation we have used the following procedure. Close to

the Sm-A–Sm-C phase transition the anglesa and b and
the variablew are small. The symmetric chevron struc-
ture requiresb(0)50 and w(0)50. We consider only
free surfaces atr561/2 ~no orientational, only positional
anchoring: L/lS50), which leads to ar(61/2)
5br(61/2)5wr(61/2)50. In addition, the variablea is
symmetric around the chevron interface, whilew andb are
antisymmetric. Then the variables can be written as

FIG. 7. Temperature dependence of the excess free energy as-
sociated with the chevron interface.D1543104, D250.01,
L52 mm, K510211 J/m,L2/l i

25105, andL/lS50.

FIG. 6. ~a! Temperature dependence of the
chevron tip width. Inset, temperature dependence
of the ratio between the numerically calculated
chevron tip width (lch

num) and the characteristic
length lch. ~b! Temperature dependence of the
reduction of the molecular cone angle at the
chevron tip. Line, the molecular tilt in the book-
shelf geometry above the threshold temperature
for the chevron formation and below the Sm-
A–Sm-C transition temperature. In all cases,
L2/l i

25105, utucr52.531026, D1543104,
D250.01, andL/lS50.
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a~r!5 (
k50

`

akcos2kpr'a0 , ~19!

b~r!5 (
k50

`

bksinkpr'b1sinpr, ~20!

w~r!5 (
k50

`

wksinkpr'w1sinpr. ~21!

We now use the fact that the leading term dominates close to
the phase transition.

To obtain the amplitudesa0, b1, andw1 the free-energy
density@Eq. ~7!# has to be expanded up to the fourth order in

a, b, andw. After integration we obtain the following ex-
pression for the total free energy of the cell:

G5S L2l i
2a0t Da0

21
1

2 S p2D21
L2

l i
2a0t Dw1

2

1
1

4 S L2l i
2 14D1Da0

41 3
8D1w1

41D1a0
2w1

2

2S L2l i
2a0t1p2D2Da0w1b11

p2

2
~1/21D2!a0

2b1
2 .

This expression is minimized for the following nonzero val-
ues of the amplitudesa0, w1, andb1:

w1
25

2
L4

l i
4a0t1H 2p2D21S L2l i

2a0t1p2D2D 2 1

p2~1/21D2!
J S L2l i

2 14D1D
2D1

21 3
2D1

L2

l i
2

, ~22!

a0
25

22S L2l i
2a0t1D1w1

2D
L2

l i
2 14D1

, ~23!

b15

p2D21
L2

l i
2a0t

~1/21D2!p
2

w1

a0
. ~24!

A real value forw1 is obtained only fort,tcr, wheretcr is
obtained from Eq.~22!:

2
L4

l i
4a0t

cr1H 2p2D21S L2l i
2a0t

cr1p2D2D 2 1

p2~1/21D2!
J

3S L2l i
2 14D1D 50 .

For L2/l i
25105, a051, D1543104, and D250.01 this

value is tcr522.531026. The critical temperature for the
chevron formation increases for materials with a smaller
compressibility constant or a smaller value of the bulk mo-
lecular cone angle deep in the Sm-C phase. The transition
temperature to the Sm-C phase is not shifted from its bulk
value. As soon ast,0, the bookshelf geometry, where the
molecules are tilted bya05qB/@11(L2/l i

2)/(4D1)#
1/2 in

the (x,y) plane, becomes stable. The transition is second
order. The chevron structure can exist belowtcr. The book-
shelf structure with tilted molecules remains metastable,
while the chevron structure is the structure with the mini-
mum total free energy. We have checked that the numerical
results confirm the analytical predictions.

D. Comparison with other models of chevron behavior

First we shall compare our model with the Limat free-
energy density. For that purpose we rewrite the dimension-
less free energy@Eq. ~17!# in the dimensional form and as-
sume that q5q05const. For the nematic free-energy
density we obtain

f n5
1
2K@dx

21q0
2wx

222q0dxwxcosw#; ~25!

and for the smectic free-energy density,

f s5q0
2hB

2ciS q0
2

2
2

d2

2 D 22uc'uq0
2hB

2q0
21Dq0

4hB
2q0

4

1Dq0
2hB

2wx
2q0

2cos2w. ~26!

Considering only the nonconstant contributions, the total
free-energy density is

f5 1
2K@dx

21~11D2cos
2w!q0

2wx
222q0dxwxcosw#

1q0
2cihB

2 S q0
2

2
2

d2

2 D 2. ~27!

This expression can now be compared with the Limat free-
energy density:
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f LIM5 1
2K~dx

21nq0
2wx

222mq0dxwxcosw!1BS d0
2

2
2

d2

2 D 2
1~chiral term!, ~28!

where n andm measure the departures from the uniaxial
approximation. Comparing the free-energy density expres-
sions~27! and ~28! we find the following relations:

n511D2cos
2w, m51, B5ciq0

2hB
2 .

The model of Clark and co-workers@1,4# can be obtained
from the Limat model in the limitn5m51, that is, for
D250. This, however, is an unphysical value. In realistic
casesD2 is small ~about 0.01! and far from the Sm-A–Sm-
C phase transition the chevron tip width is small compared
to the cell thickness (lch

num'1023L). In that region the as-
sumptions of Clark and co-workers are justified. But this
model essentially loses the information on the energy of the
chevron interface. It also predicts that there is no director
rotation on the cone away from the cell plane@the (x,z)
plane in our coordinate system# if the layer tilt angle equals
the molecular cone angle. In their model the pretilt of the
director results from the fact that the layer tilt angle is
smaller than the molecular cone angle. We have shown that
the continuity of the molecular director over a chevron tip
with finite thickness is a sufficient condition for the director
pretilt and that the degree of pretilt strongly depends on the
surface treatment@Figs. 3~a! and 3~b!#.

Nakagawa’s solution can also be obtained from the Limat
model in the limit of smallw. Limat has shown that the
Nakagawa model can be applied only in the limit of
d0 /q0!1, whered0 is the layer tilt angle far from the chev-
ron tip. We have shown that far from the Sm-A–Sm-C phase
transition and at zero orientational surface anchoring the spa-
tial dependences ofd and w are described well by
d5d0tanh(rL/lch) and w5w0tanh(rL/lch). But the ampli-
tudes d0 and w0 need not be small and the condition
d0!q0 is not necessary to obtain a finite pretilt of the mo-
lecular director. Our results also show that far from the phase
transition the chevron tip width is of the order of layer thick-
ness. It can be argued, therefore, that the reduction of the
molecular cone angle at the chevron tip can be neglected,
since it happens on such a small length scale. We have
checked that the approximation with constantq does not
affect the amplitudes ofd andw significantly. It does affect,
though, the free energy of the chevron interface, which is
about twice as great if we assumeq to be constant.

De Meyere and co-workers@11,12# have considered spa-
tial variations of the molecular cone angle. They have as-
sumed the following relation betweend and q:
cosq5ncosd, where n5 l 0 / l m , l 0 is the layer thickness
along thez direction, andl m is the molecular length that

changes with temperature. At the chevron tipd50; therefore
cosq5n. If n51, as in our model,q should be zero at the
chevron tip. But we treatq andd as independent variables.
In the expression for the free-energy density there are two
competing terms that determine the cone angle value: the
compression energy and thec' term. In the small-angle ap-
proximation the first one is proportional toci(d

22q2)2 and
the second to2uc'uq2 @see Eq.~26!#. So, although thec'

elastic constant is about ten times smaller thanci ~far from
the Sm-A–Sm-C phase transition!, the second term is more
important. This explains why the molecular cone angle de-
creases at the chevron tip; it does not, however, go com-
pletely to zero.

IV. CONCLUSIONS

We have used Landau–de Gennes theory to describe the
chevron structure in uniform and symmetric achiral Sm-C
cells. The model is conceptually extremely simple. We find
that the chevron is a thermodynamical equilibrium structure.
The model has permitted calculation of the essential proper-
ties of the chevron. Among such properties are the existence
of bistability of the optical axis, the energy and thickness of
the chevron interface, and the threshold condition for chev-
ron formation. In our calculations the effect of layer mis-
match between the bulk and the surface has been ignored,
and for this reason the layer tiltd and the cone angleqB are
very closely equal. Relaxing this condition alters this conclu-
sion.

There are a number of other related models that treat
chevron properties in Sm-C liquid-crystal cells. Many of
these models require simplifying assumptions in order to de-
rive a tractable set of equations. These simplifying assump-
tions are not required in the model we have used. We have
elaborated the connection between the Landau–de Gennes
theory and other models that may be regarded as special
cases within this more general paradigm.

We have also studied the influence of surface orienta-
tional anchoring on the pretilt of the molecular director. By
contrast with the work of other authors@1,9–11# we have
shown that pretilt is obtained even when the molecular cone
angle equals the layer tilt angle. In this special case the pretilt
is a consequence of the fact that at the chevron tip a finite
angle between the layer normal and the director is favored.
This tilt propagates to the cell boundary. Finally we note that
in practice the chevron tip is very sharp—its width is ap-
proximately 1023L, far from the Sm-A–Sm-C phase
transition—and there is a significant increase in the free-
energy density around the tip. It seems possible, therefore,
that the local smectic elastic distortions might be strong
enough to cause a substantial variation of the smectic order
parameter. We plan to investigate this and other chevron
properties in future work.
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